Saccade-vergence interactions in macaques. II. Vergence enhancement as the product of a local feedback vergence motor error and a weighted saccadic burst.

نویسندگان

  • C Busettini
  • L E Mays
چکیده

In the accompanying paper we reported that intrasaccadic vergence enhancement during combined saccade-vergence eye movements reflects saccadic dynamics, which implies the involvement of saccadic burst signals. This involvement was not predicted by the Multiply Model of Zee et al. We propose a model wherein vergence enhancement is the result of a multiplicative interaction between a weighted saccadic burst signal and a nonvisual short-latency estimate of the vergence motor error at the time of the saccade. The enhancement of vergence velocity by saccades causes the vergence goal to be approached more rapidly than if no saccade had occurred. The adjustment of the postsaccadic vergence velocity to this faster reduction in vergence motor error occurred with a time course too fast for visual feedback. This implies the presence of an internal estimate of the progress of the movement and indicates that vergence responses are under the control of a local feedback mechanism. It also implies that the vergence enhancement signal is included in the vergence feedback loop and is an integral part of the vergence velocity command. Our multiplicative model is able to predict the peak velocity of the vergence enhancement as a function of cyclopean saccadic dynamics, smooth vergence dynamics, and saccade-vergence timing with remarkable precision. It performed equally well for both horizontal and vertical saccades with very similar parameters, suggesting a common mechanism for all saccadic directions. A saccade-vergence additive model is also presented, although it would require external switching elements. Possible neural implementations are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Saccade-vergence interactions in macaques. I. Test of the omnipause Multiply Model.

Horizontal vergence eye movements are movements in opposite directions used to change fixation between far and near targets. The occurrence of a saccade during vergence causes vergence velocity to be transiently enhanced. The goal of this study was to test in the monkey the previously described Multiply Model (Zee et al. 1992) that holds that, in humans, the speeding of vergence during a saccad...

متن کامل

Saccade-vergence interactions in humans.

1. We recorded eye movements in four normal human subjects during refixations between targets calling for various combinations of saccades and vergence. We confirmed and extended prior observations of 1) transient changes in horizontal ocular alignment during both pure horizontal saccades (relative divergence followed by relative convergence) and pure vertical saccades (usually divergence for u...

متن کامل

Dynamic coding of vertical facilitated vergence by premotor saccadic burst neurons.

To redirect our gaze in three-dimensional space we frequently combine saccades and vergence. These eye movements, known as disconjugate saccades, are characterized by eyes rotating by different amounts, with markedly different dynamics, and occur whenever gaze is shifted between near and far objects. How the brain ensures the precise control of binocular positioning remains controversial. It ha...

متن کامل

Effects of voluntary blinks on saccades, vergence eye movements, and saccade-vergence interactions in humans.

Blinks are known to change the kinematic properties of horizontal saccades, probably by influencing the saccadic premotor circuit. The neuronal basis of this effect could be explained by changes in the activity of omnipause neurons in the nucleus raphe interpositus or in the saccade-related burst neurons of the superior colliculus. Omnipause neurons cease discharge during both saccades and verg...

متن کامل

Pontine omnipause activity during conjugate and disconjugate eye movements in macaques.

Previous reports have shown that saccades executed during vergence eye movements are often slower and longer than conjugate saccades. Lesions in the nucleus raphe interpositus, where pontine omnipause neurons (OPNs) are located, were also shown to result in slower and longer saccades. If vergence transiently suppresses the activity of the OPNs just before a saccade, then reduced presaccadic act...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 94 4  شماره 

صفحات  -

تاریخ انتشار 2005